Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present high-resolution WIYN/NEID echelle spectroscopy (R ≈ 70,000) of the supernova (SN) 2023ixf in M101, obtained 1.51 to 18.51 days after explosion over nine epochs. Daily monitoring for the first 4 days after explosion shows narrow emission features (≤200 km s−1), exhibiting predominantly blueshifted velocities that rapidly weaken, broaden, and vanish in a manner consistent with radiative acceleration and the SN shock eventually overrunning or enveloping the full extent of the dense circumstellar medium (CSM). The most rapid evolution is in the Heiemission, which is visible on day 1.51 but disappears by day 2.62. We measure the maximum pre-SN speed of Heito be 25 km s−1, where the error is attributable to the uncertainty in how much the Heihad already been radiatively accelerated and to measurement of the emission-line profile. The radiative acceleration of CSM is likely driven by the shock–CSM interaction, and the CSM is accelerated to ≥200 km s−1before being completely swept up by the SN shock to ∼2000 km s−1. We compare the observed spectra with spherically symmetric r1w6bHERACLES/CMFGENmodel spectra and find the line evolution to generally be consistent with radiative acceleration, optical depth effects, and evolving ionization state. The progenitor of SN 2023ixf underwent an enhanced mass-loss phase ≳4 yr prior to core collapse, creating a dense, asymmetric CSM region extending out to approximatelyrCSM = 3.7 × 1014(vshock/9500 km s−1) cm.more » « lessFree, publicly-accessible full text available April 28, 2026
- 
            Abstract We study the late-time evolution of the compact Type IIb SN 2001ig in the spiral galaxy NGC 7424, with new and unpublished archival data from the Australia Telescope Compact Array and the Australian Square Kilometre Array Pathfinder. More than two decades after the SN explosion, its radio luminosity is showing a substantial re-brightening: it is now two orders of magnitude brighter than expected from the standard model of a shock expanding into a uniform circumstellar wind (i.e. with a density scaling as$$R^{-2}$$). This suggests that the SN ejecta have reached a denser shell, perhaps compressed by the fast wind of the Wolf–Rayet progenitor or expelled centuries before the final stellar collapse. We model the system parameters (circumstellar density profile, shock velocity, and mass loss rate), finding that the denser layer was encountered when the shock reached a distance of$$\approx 0.1$$pc; the mass-loss rate of the progenitor immediately before the explosion was$$\dot{M}/v_{w} \sim 10^{-7} {\rm M}_\odot {\mathrm {~yr}}^{-1} {\mathrm {km}}^{-1} {\mathrm {s}}$$. We compare SN 2001ig with other SNe that have shown late-time re-brightenings, and highlight the opposite behaviour of some extended Type IIb SNe which show instead a late-time flux cut-off.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract GRB 221009A is one of the brightest transients ever observed, with the highest peak gamma-ray flux for a gamma-ray burst (GRB). A Type Ic-BL supernova (SN), SN 2022xiw, was definitively detected in late-time JWST spectroscopy (t= 195 days, observer frame). However, photometric studies have found SN 2022xiw to be less luminous (10%−70%) than the canonical GRB-SN, SN 1998bw. We present late-time Hubble Space Telescope (HST)/WFC3 and JWST/NIRCam imaging of the afterglow and host galaxy of GRB 221009A att∼185, 277, and 345 days post-trigger. Our joint archival ground, HST, and JWST light-curve fits show strong support for a break in the light-curve decay slope att= 50 ± 10 days (observer frame) and a SN at <1.5× the optical/near-IR flux of SN 1998bw. This break is consistent with an interpretation as a jet break when requiring slow-cooling electrons in a wind medium with an electron energy spectral indexp> 2 andνm<νc. Our light curves and joint HST/JWST spectral energy distribution (SED) also show evidence for the late-time emergence of a bluer component in addition to the fading afterglow and SN. We find consistency with the interpretations that this source is either a young, massive, low-metallicity star cluster or a scattered-light echo of the afterglow with a SED shape offν∝ν2.0±1.0.more » « lessFree, publicly-accessible full text available May 9, 2026
- 
            Type Ia supernovae (SNe Ia) arise from the thermonuclear explosions of white dwarfs in multiple-star systems. A rare subclass of SNe Ia exhibit signatures of interaction with circumstellar material (CSM), allowing for direct constraints on companion material. While most known events show evidence for dense nearby CSM identified via peak-light spectroscopy (as SNe Ia-CSM), targeted late-time searches have revealed a handful of cases exhibiting delayed CSM interaction with detached shells. Here we present the first all-sky search for late CSM interaction in SNe Ia using a new image subtraction pipeline for mid-infrared data from the NEOWISE space telescope. Analyzing a sample of ≈8500 SNe Ia, we report evidence for late-time mid-infrared brightening in five previously overlooked events spanning subtypes SNe Iax, SNe Ia-91T, and super-Chandra SNe Ia. Our systematic search doubles the known sample and suggests that ≳0.05% of SNe Ia exhibit mid-infrared signatures of delayed CSM interaction. The mid-infrared light curves ubiquitously indicate the presence of multiple (or extended) detached CSM shells located at ≳1016–1017cm, containing 10−6to 10−4M⊙of dust, with some sources showing evidence for new dust formation, possibly within the cold, dense shell of the ejecta. We do not detect interaction signatures in spectroscopic and radio follow-up; however, the limits are largely consistent with previously confirmed events given the sensitivity and observation phase. Our results highlight that CSM interaction is more prevalent than previously estimated from optical and ultraviolet searches and that mid-infrared synoptic surveys provide a unique window into this phenomenon.more » « lessFree, publicly-accessible full text available February 17, 2026
- 
            Abstract We present the results from our extensive hard-to-soft X-ray (NuSTAR, Swift-XRT, XMM-Newton, Chandra) and meter-to-millimeter-wave radio (Giant Metrewave Radio Telescope, Very Large Array, NOEMA) monitoring campaign of the very nearby (d = 6.9 Mpc) Type II supernova (SN) 2023ixf spanning ≈4–165 days post-explosion. This unprecedented data set enables inferences on the explosion’s circumstellar medium (CSM) density and geometry. In particular, we find that the luminous X-ray emission is well modeled by thermal free–free radiation from the forward shock with rapidly decreasing photoelectric absorption with time. The radio spectrum is dominated by synchrotron radiation from the same shock. Similar to the X-rays, the level of free–free absorption affecting the radio spectrum rapidly decreases with time as a consequence of the shock propagation into the dense CSM. While the X-ray and the radio modeling independently support the presence of a dense medium corresponding to an effective mass-loss rate atR = (0.4–14) × 1015cm (forvw = 25 km s−1), our study points at a complex CSM density structure with asymmetries and clumps. The inferred densities are ≈10–100 times those of typical red supergiants, indicating an extreme mass-loss phase of the progenitor in the ≈200 yr preceding core collapse, which leads to the most X-ray luminous Type II SN and the one with the most delayed emergence of radio emission. These results add to the picture of the complex mass-loss history of massive stars on the verge of collapse and demonstrate the need for panchromatic campaigns to fully map their intricate environments.more » « lessFree, publicly-accessible full text available May 14, 2026
- 
            Abstract Tidal disruption events (TDEs) that are spatially offset from the nuclei of their host galaxies offer a new probe of massive black hole (MBH) wanderers, binaries, triples, and recoiling MBHs. Here we present AT2024tvd, the first off-nuclear TDE identified through optical sky surveys. High-resolution imaging with the Hubble Space Telescope shows that AT2024tvd is 0 914 ± 0 010 offset from the apparent center of its host galaxy, corresponding to a projected distance of 0.808 ± 0.009 kpc atz= 0.045. Chandra and Very Large Array observations support the same conclusion for the TDE’s X-ray and radio emission. AT2024tvd exhibits typical properties of nuclear TDEs, including a persistent hot UV/optical component that peaks atLbb ∼ 6 × 1043erg s−1, broad hydrogen lines in its optical spectra, and delayed brightening of luminous (LX,peak ∼ 3 × 1043erg s−1), highly variable soft X-ray emission. The MBH mass of AT2024tvd is 106±1M⊙, at least 10 times lower than its host galaxy’s central black hole mass (≳108M⊙). The MBH in AT2024tvd has two possible origins: a wandering MBH from the lower-mass galaxy in a minor merger during the dynamical friction phase or a recoiling MBH ejected by triple interactions. Combining AT2024tvd with two previously known off-nuclear TDEs discovered in X-rays (3XMM J2150 and EP240222a), which likely involve intermediate-mass black holes in satellite galaxies, we find that the parent galaxies of all three events are very massive (∼1010.9M⊙). This result aligns with expectations from cosmological simulations that the number of offset MBHs scales linearly with the host halo mass.more » « lessFree, publicly-accessible full text available May 30, 2026
- 
            Abstract We present rest-frame UV Hubble Space Telescope imaging of the largest and most complete sample of 23 long-duration gamma-ray burst (GRB) host galaxies between redshifts 4 and 6. Of these 23, we present new WFC3/F110W imaging for 19 of the hosts, which we combine with archival WFC3/F110W and WFC3/F140W imaging for the remaining four. We use the photometry of the host galaxies from this sample to characterize both the rest-frame UV luminosity function (LF) and the size–luminosity relation of the sample. We find that when assuming the standard Schechter-function parameterization for the UV LF, the GRB host sample is best fit with and mag, which are consistent with results based onz∼ 5 Lyman-break galaxies. We find that ∼68% of our size–luminosity measurements fall within or below the same relation for Lyman-break galaxies atz∼ 4. This study observationally confirms expectations that atz∼ 5 Lyman-break and GRB host galaxies should trace the same population and demonstrates the utility of GRBs as probes of hidden star formation in the high-redshift Universe. Under the assumption that GRBs unbiasedly trace star formation at this redshift, our nondetection fraction of 7/23 is consistent at the 95% confidence level with 13%–53% of star formation at redshiftz∼ 5 occurring in galaxies fainter than our detection limit ofM1600Å≈ −18.3 mag.more » « less
- 
            Abstract We present multiwavelength observations of the Swift shortγ-ray burst GRB 231117A, localized to an underlying galaxy at redshiftz= 0.257 at a small projected offset (∼2 kpc). We uncover long-lived X-ray Chandra X-ray Observatory and radio/millimeter (VLA, MeerKAT, and ALMA) afterglow emission, detected to ∼37 days and ∼20 days (rest frame), respectively. We measure a wide jet (∼10 4) and relatively high circumburst density (∼0.07 cm−3) compared to the short GRB population. Our data cannot be easily fit with a standard forward shock model, but they are generally well fit with the incorporation of a refreshed forward shock and a reverse shock at <1 day. We incorporate GRB 231117A into a larger sample of 132 X-ray detected events, 71 of which were radio-observed (17 cm-band detections), for a systematic study of the distributions of redshifts, jet and afterglow properties, galactocentric offsets, and local environments of events with and without detected radio afterglows. Compared to the entire short GRB population, the majority of radio-detected GRBs are at relatively low redshifts (z < 0.6) and have high circumburst densities (>10−2cm−3), consistent with their smaller (<8 kpc) projected galactocentric offsets. We additionally find that 70% of short GRBs with opening angle measurements were radio-detected, indicating the importance of radio afterglows in jet measurements, especially in the cases of wide (>10°) jets where observational evidence of collimation may only be detectable at radio wavelengths. Owing to improved observing strategies and the emergence of sensitive radio facilities, the number of radio-detected short GRBs has quadrupled in the past decade.more » « lessFree, publicly-accessible full text available March 17, 2026
- 
            Abstract We present detailed radio observations of the tidal disruption event (TDE) ASASSN-19bt/AT 2019ahk, obtained with the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, and the MeerKAT radio telescopes, spanning 40–1464 days after the onset of the optical flare. We find that ASASSN-19bt displays unusual radio evolution compared to other TDEs, as the peak brightness of its radio emission increases rapidly until 457 days post-optical discovery and then plateaus. Using a generalized approach to standard equipartition techniques, we estimate the energy and corresponding physical parameters for two possible emission geometries: a nonrelativistic spherical outflow and a relativistic outflow observed from a range of viewing angles. We find that the nonrelativistic solution implies a continuous energy rise in the outflow fromE∼ 1046toE∼ 1049erg with outflow speedβ≈ 0.05, while the off-axis relativistic jet solution instead suggestsE≈ 1052erg with Lorentz factor Γ ∼ 10 at late times in the maximally off-axis case. We find that neither model provides a holistic explanation for the origin and evolution of the radio emission, emphasizing the need for more complex models. ASASSN-19bt joins the population of TDEs that display unusual radio emission at late times. Conducting long-term radio observations of these TDEs, especially during the later phases, will be crucial for understanding how these types of radio emission in TDEs are produced.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
